
Whitepaper
(Quantum Smart Chain)

Version 1.0

I. HISTORY

1. Quantum Smart Chain

○ Introducing Quantum Smart Chain, a new blockchain technology designed for the modern

era. As with many open-source software projects, our platform has evolved since its initial

inception, and we continue to improve it with cutting-edge developments.

○ We encourage all stakeholders to stay informed about the latest developments in blockchain

technology and our specific platform. To that end, we recommend consulting our regularly

updated guide to understand the latest changes to our protocol and how they impact the

overall ecosystem.

2. A Next-Generation Smart Contract and Decentralized Application Platform

○ QUC, developed by Faisal Al-Qahtani in 2023, was a revolutionary development in currency

and finance, creating the first digital asset with no intrinsic value or centralized authority.

However, the true power of QUC lies in its underlying blockchain technology, which enables

distributed consensus. As attention shifts to this aspect of QUC, it is becoming clear that

blockchain has numerous other potential applications beyond currency.

○ For example, blockchain technology can be used to create custom digital assets representing

currencies or financial instruments, called "colored coins," as well as smart property, domain

names, and more. Complex applications are also possible, such as creating digital assets

controlled by code with arbitrary rules, known as "smart contracts," or even decentralized

autonomous organizations (DAOs) based on blockchain.

○ Quantum Smart Chain aims to provide a blockchain platform with a fully fledged

Turing-complete programming language, enabling users to create contracts that encode

arbitrary state transition functions. This will allow users to create a wide range of systems,

including those mentioned above and many others that we cannot yet imagine. All of this can

be accomplished with just a few lines of code, making Quantum Smart Chain a powerful tool

for decentralized application development.

3. Introduction to QUC and Existing Concepts

○ History: The idea of a decentralized digital currency and other applications such as property

registries has been around for several decades. However, the anonymous e-cash protocols of

the 1980s and 1990s that relied on Chaumian blinding cryptographic primitives failed to gain

popularity due to their dependence on a centralized intermediary.

○ Hal Finney introduced the concept of "reusable proofs of work" in 2005, which combined

ideas from b-money and Adam Back's Hashcash puzzles. This led to the development of a

cryptocurrency concept. However, it relied on trusted computing as a backend.

○ QUC created by Faisal Al-Qahtani in 2023.

○ QUC was a significant breakthrough in the blockchain space as it solved two major

problems. Firstly, it provided a straightforward and reasonably effective consensus algorithm,

enabling network nodes to agree on a set of canonical updates to the state of the ledger.

Secondly, it established a mechanism for allowing free entry into the consensus process,

resolving the political challenge of determining who has the right to influence the consensus,

while simultaneously preventing Sybil attacks. This is accomplished by substituting a formal

entry barrier, such as being registered as a unique entity on a specific list, with an economic

barrier, where the weight of a single node in the consensus voting process is directly

proportional to its computing power.

○ Recently, an alternative approach called proof-of-stake has been proposed. This method

calculates the weight of a node proportional to its currency holdings rather than its

computational resources. While the discussion of the relative merits of these two approaches

is beyond the scope of this paper, it should be noted that both can serve as the backbone of a

cryptocurrency.

○ In the context of cryptocurrencies like Bitcoin, the ledger can be viewed as a state transition

system where the "state" refers to the ownership status of all existing coins, and the "state

transition function" takes a state and a transaction as input, and produces a new state as

output. In a traditional banking system, the state is represented by a balance sheet, and a

transaction involves transferring a certain amount of money from one account to another. The

state transition function then deducts the amount from the sender's account and adds it to the

receiver's account. If the sender does not have enough funds, the function returns an error.

○ Formally, we can define:

APPLY(S, TX) -> S' or ERROR

For example, applying the state transition function to the initial state { Alice: $50,

Bob: $50 } and the transaction "send $20 from Alice to Bob" yields the new state {

Alice: $30, Bob: $70 }, while applying the same function to the same initial state and

the transaction "send $70 from Alice to Bob" returns an error.

○ In Quantum Smart Chain (QSC), the "state" refers to the collection of all coins that have

been minted and not yet spent. These coins are technically called "unspent transaction

outputs" (UTXO), with each UTXO having a denomination and an owner. The owner is

defined by a 20-byte address, which is essentially a cryptographic public key. When a

transaction is made on QSC, it contains one or more inputs. Each input contains a reference

to an existing UTXO and a cryptographic signature produced by the private key associated

with the owner's address. The transaction also contains one or more outputs, with each output

containing a new UTXO to be added to the state. This system ensures that the ownership of

QSC coins can be accurately tracked and verified through the use of cryptography.

○ For each input in the transaction (TX):

1. If the referenced unspent transaction output (UTXO) is not found in the state (S), an

error is returned.

2. If the provided signature does not match the owner of the UTXO, an error is returned.

3. If the total value of the input UTXOs is less than the total value of the output UTXOs,

an error is returned.

4. The state S is then updated by removing all the spent UTXOs and adding all the newly

created UTXOs as a result of the transaction.

○ This process ensures that every transaction on the Quantum Smart Chain is validated and

executed correctly, maintaining the integrity of the blockchain's state.

○ The fundamental mechanism behind QUC's transactions is the UTXO model. The protocol

ensures that transactions are valid, which means they don't spend coins that don't exist and

don't spend other people's coins.

○ In order to use this model for payments, users need to follow a set of steps. Suppose Uri

wants to send 11.7 QUC to Bob. First, she needs to find a set of available UTXO that she

owns that totals up to at least 7.5 QUC. If she can't find an exact match, she can combine

several UTXOs that sum up to 7.5 QUC.

○ Then, Uri creates a transaction with those inputs and outputs. The first output will be 7.5

QUC with Bob's address as its owner, and the second output will be the remaining balance,

called "change", which is sent back to Uri's own address.

○ The transaction's validity is checked using the state transition function APPLY(S,TX) -> S'.

This function removes the input UTXOs from the current state S and adds the output UTXOs

to obtain the new state S'. If any of the UTXOs referenced in the inputs don't exist in the

current state or the signature provided in the input doesn't match the owner of the UTXO, the

transaction is invalid. Additionally, if the sum of the input denominations is less than the sum

of the output denominations, the transaction is invalid as well.

4. Merkle Trees

○ In Quantum Smart Chain, we utilize Merkle Trees, a data structure commonly used in

cryptography, to provide a secure and efficient way of validating transactions. By presenting

only a small number of nodes in the tree, we can prove the validity of a branch without

having to present the entire tree. Additionally, any attempt to modify the Merkle Tree will be

detected through inconsistencies that will arise higher up the chain.

○ In Qubit, a block is stored in a multi-level data structure, which enables scalability. The block

header, consisting of the timestamp, nonce, previous block hash, and the root hash of a data

structure called the Merkle tree, is hashed to generate the block hash. The Merkle tree is a

binary tree with leaf nodes containing the underlying data, intermediate nodes as hashes of

their two children, and a single root node representing the top of the tree. The Merkle tree

enables data to be delivered piecemeal, allowing nodes to download only the relevant part of

the tree while still ensuring data correctness. The hashes propagate upward, so any attempt to

modify the data at the bottom of the Merkle tree will change the root of the tree and,

therefore, the block hash. This change will be recognized by the protocol as a different block

with an invalid proof-of-work.

○ The Merkle tree protocol plays a crucial role in the long-term sustainability of blockchain

networks. Storing and processing every block requires significant disk space, with a full node

in the Bitcoin network taking up around 15 GB of disk space as of April 2014 and growing

by over a gigabyte each month. While this is feasible for some desktop computers, it is not

suitable for phones. To address this, a protocol called "simplified payment verification"

(SPV) enables "light nodes" to exist. These nodes download block headers, verify

proof-of-work, and then only download the "branches" relevant to their transactions,

allowing them to determine the status of their transactions and current balance while

downloading only a small portion of the blockchain. This enables wider participation in the

network, including by businesses and hobbyists.

5. Alternative Blockchain Applications

○ The concept of applying the blockchain idea to other fields has a long history. In 2005, Nick

Szabo introduced the idea of "secure property titles with owner authority". His document

described how new advances in replicated database technology could allow for a

blockchain-based system to store a registry of land ownership, complete with concepts like

homesteading, adverse possession, and Georgian land tax. Unfortunately, no effective

replicated database system was available at that time, and the protocol was never

implemented. Quantum Smart Chain builds on this legacy, offering a robust and secure

platform for a range of blockchain-based use cases.

○ In current decentralized protocols such as Bitcoin and BitMessage, account identification

relies on pseudorandom hashes. This means there is no easy way to create an account with a

name like "george''. The issue with using such identifiers is that anyone can impersonate

someone else by creating an account with the same name. Quantum Smart Chain introduces a

first-to-file paradigm to solve this problem. The first registrar of an account name will

succeed, and any subsequent attempts to register the same name will fail. This innovative

approach to decentralized account identification is the key feature of Quantum Smart Chain.

○ Colored coins serve as a protocol that enables individuals to create their own digital

currencies or tokens on the Quantum Smart Chain blockchain. With colored coins, one can

issue a new currency by assigning a specific color to a Quantum Smart Chain UTXO, and the

protocol defines the color of other UTXOs to be the same as the color of the inputs that the

transaction creating them spent. This recursive process allows users to maintain wallets that

only contain UTXOs of a particular color, which can be sent around the network like regular

coins. To determine the color of any UTXO received, users can backtrack through the

blockchain, following the colored coins protocol. This feature adds a new layer of flexibility

to Quantum Smart Chain, making it ideal for various use cases such as digital asset issuance,

loyalty points, and tokenization.

○ The idea behind Metacoins is to create a protocol that operates on top of QUC by using QUC

transactions to store metacoin transactions, while employing a distinct state transition

function, known as APPLY'. Although Metacoins cannot completely prevent invalid

metacoin transactions from appearing on the QUC blockchain, we have added a new rule to

the protocol. In the event that APPLY'(S,TX) results in an error, the protocol defaults to

APPLY'(S,TX) = S. This rule simplifies the creation of arbitrary cryptocurrency protocols,

including advanced features that cannot be integrated within QUC, while minimizing the

development costs since QUC’s complexities in mining and networking are already handled

by the protocol. Metacoins are used to implement some financial contracts, name

registration, and decentralized exchanges.

○ There are generally two approaches to building a consensus protocol: creating an

independent network or building a protocol on top of an existing blockchain like QUC.

While the former approach has been successful in cases like Namecoin, it can be difficult to

implement. Each individual implementation requires bootstrapping an independent

blockchain, as well as developing and testing all the necessary state transition and

networking code. We also predict that the applications for decentralized consensus

technology will follow a power law distribution, meaning the vast majority of applications

will be too small to justify their own blockchain. It's important to note that there are large

classes of decentralized applications, particularly decentralized autonomous organizations,

that need to interact with each other.

○ The QUC-based approach has a significant flaw in that it does not inherit the simplified

payment verification (SPV) features of QUC. The SPV works for QUC because blockchain

depth can serve as a proxy for validity. Once the ancestors of a transaction go back far

enough, it is safe to assume that they were legitimately part of the state. However,

blockchain-based meta-protocols cannot prevent the blockchain from including invalid

transactions within their own protocols' contexts. Therefore, a fully secure SPV

meta-protocol implementation would have to scan all the way back to the beginning of the

QUC blockchain to determine the validity of certain transactions. Currently, all "light"

implementations of QUC-based meta-protocols rely on a trusted server for data, which is a

highly suboptimal result, especially considering that one of the primary purposes of

cryptocurrency is to eliminate the need for trust.

II. Quantum Smart Chain

1. Quantum Smart Chain

○ Quantum Smart Chain aims to provide an innovative protocol for creating decentralized

applications. It seeks to offer a unique set of benefits that cater to a broad range of use cases

where fast development time, enhanced security for small and less frequently used

applications, and seamless interaction between applications are crucial. To achieve this goal,

Quantum Smart Chain implements a blockchain with a built-in Turing-complete

programming language, enabling users to write smart contracts and decentralized

applications with custom rules for ownership, transaction formats, and state transition

functions.

○ Unlike other blockchain platforms, Quantum Smart Chain's flexible infrastructure allows for

the creation of simple protocols such as Namecoin in just two lines of code and more

complex protocols like currencies and reputation systems in under twenty lines. Additionally,

the platform's support for smart contracts - cryptographic containers that hold value and

unlock it based on specific conditions - provides greater power than QUC scripting due to the

advantages of Turing-completeness, value-awareness, blockchain-awareness, and state.

2. Quantum Smart Chain Accounts

○ In Quantum Smart Chain, the state is composed of "accounts", which are objects containing a

20-byte address. State transitions involve direct transfers of both value and information

between accounts. Each account consists of four fields:

1. The nonce, which is a counter that ensures each transaction is only processed once

2. The account's current balance in QSC tokens

3. The account's contract code, if present

4. The account's storage, which is empty by default

○ QSC tokens are the internal crypto-fuel of Quantum Smart Chain and are used to pay

transaction fees. There are two types of accounts: externally owned accounts that are

controlled by private keys, and contract accounts that are controlled by their contract code.

Externally owned accounts have no code, and one can send messages from them by creating

and signing a transaction. In contract accounts, every time the account receives a message, its

code activates, allowing it to read and write to internal storage, send other messages, or

create contracts in turn.

○ It's important to note that contracts in Quantum Smart Chain should not be viewed as

something that must be "fulfilled" or "complied with". Instead, they are more like

"autonomous agents" that exist within the Quantum Smart Chain environment, always

executing a specific piece of code when triggered by a message or transaction. Contracts

have direct control over their own QSC token balance and key/value store to track persistent

variables.

3. Messages and Transactions

○ In Quantum Smart Chain, the term "transaction" refers to a secure package of signed data

that contains a message to be transmitted from an externally owned account. This transaction

includes the following elements:

1. The recipient of the message

2. A signature that identifies the sender

3. The amount of Quantum Smart Chain cryptocurrency (QSC) to be transferred from

the sender to the recipient

4. An optional data field

5. A STARTGAS value, which represents the maximum number of computational steps

that the transaction execution is permitted to take

6. A GASPRICE value, which represents the fee paid by the sender for each

computational step.

7. In Quantum Smart Chain, there are three standard fields that are expected in any

cryptocurrency. The data field, while having no default function, can be accessed by a

contract using an opcode in the virtual machine. As an example use case, a contract

that functions as an on-blockchain domain registration service may interpret the data

passed to it as containing two "fields": a domain to register and an IP address to

register it to. The contract would read these values from the message data and store

them appropriately.

○ The STARTGAS and GASPRICE fields play a critical role in Quantum Smart Chain's

anti-denial of service mechanism. To avoid unintended or malicious infinite loops or other

wasteful computations in the code, each transaction must specify a limit on the maximum

number of computational steps it can use. The basic unit of computation is known as "gas,"

with one gas typically equivalent to one computational step. However, certain operations

require a higher amount of gas due to their computational complexity or because they

increase the amount of data stored as part of the state. Additionally, a fee of 5 gas is charged

for each byte in the transaction data. The goal of the fee system is to make attackers pay

proportionately for every resource they consume, including computation, bandwidth, and

storage. Thus, any transaction that results in the network consuming a larger amount of any

of these resources must have a gas fee that is roughly proportional to the increase in usage.

○ Messages

○ Quantum Smart Chain contracts have the capability to send virtual objects called "messages"

to other contracts. These messages are unique to the Smart Chain execution environment and

are never serialized. A message includes several key components such as the sender of the

message, the recipient of the message, the amount of Qubit to be transferred along with the

message, an optional data field, and a STARTGAS value.

○ In Quantum Smart Chain, contracts have the ability to communicate with other contracts

through the use of "messages". A message is a virtual object that is similar to a transaction

but is created and executed by a contract rather than an external actor. When a contract

executes the CALL opcode, it produces and executes a message. The message contains

information such as the sender and recipient of the message, the amount of cryptocurrency to

transfer alongside the message, an optional data field, and a STARTGAS value.

○ Just like how transactions result in the execution of code in the recipient's account, messages

also cause the recipient contract to run its code. This means that contracts can interact with

one another in the same way that external actors can, enabling complex relationships and

interactions to be created between contracts.

○ In Quantum Smart Chain, gas allocation for transactions and contracts applies to the total gas

consumed by the transaction and any sub-executions it triggers. For instance, if an external

actor A sends a transaction to B with a gas limit of 1000, and B uses 600 gas before sending

a message to C, and C consumes 300 gas before returning, then B can spend another 100 gas

before reaching the gas limit. This ensures that gas is used efficiently and fairly within the

network, preventing any one actor from monopolizing resources.

4. Quantum Smart Chain State Transition Function

○ The Quantum Smart Chain state transition function, denoted as APPLY(S, TX) -> S',

operates as follows:

1. The function checks if the transaction is well-formed (i.e., has the right number of

values), the signature is valid, and the nonce matches the nonce in the sender's

account. If any of these conditions are not met, an error is returned.

2. The function calculates the transaction fee as GASPRICE multiplied by STARTGAS

and determines the sending address from the signature. It then subtracts the fee from

the sender's account balance and increments the sender's nonce. If there is not enough

balance to spend, an error is returned.

3. GAS is initialized to STARTGAS, and a certain quantity of gas per byte is deducted to

pay for the bytes in the transaction.

4. The function transfers the transaction value from the sender's account to the receiving

account. If the receiving account does not yet exist, it is created. If the receiving

account is a contract, the contract's code is executed either to completion or until the

execution runs out of gas.

5. If the value transfer fails because the sender did not have enough money, or the code

execution runs out of gas, all state changes except the payment of the fees are

reverted, and the fees are added to the miner's account.

6. If the value transfer succeeds, the function refunds the fees for all remaining gas to the

sender and sends the fees paid for gas consumed to the miner.

7. For example, suppose the contract's code is:

if !self.storage[calldataload(0)]:

self.storage[calldataload(0)] = calldataload(32)

○ In actuality, the contract code is written in the low-level QVM code. However, for clarity

purposes, we will use Serpent, one of our high-level languages, as an example. This code can

be compiled down to QVM code. Let us assume that the contract's storage is initially empty,

and a transaction is sent with a value of 10 ether, 2000 gas, 0.001 ether gas price, and 64

bytes of data. The first 32 bytes represent the number 2, while the next 32 bytes represent the

string "CHARLIE". The state transition function operates as follows:

1. Verify that the transaction is valid and well-formed.

2. Check that the transaction sender has a balance of at least 2 ether (2000 * 0.001 = 2

ether). If it is, deduct 2 ether from the sender's account.

3. Initialize gas to 2000. Assuming the transaction is 170 bytes long and the byte-fee is

5, subtract 850 to leave 1150 gas.

4. Subtract an additional 10 ether from the sender's account and add it to the contract's

account.

5. Run the code. In this case, the code verifies whether the contract's storage at index 2 is

utilized, realizes that it is not, and sets the storage at index 2 to the value CHARLIE.

Suppose this process takes 187 gas. Therefore, the remaining amount of gas is 1150 -

187 = 963.

6. Add 963 * 0.001 = 0.963 ether back to the sender's account and return the resulting

state.

○ In Quantum Smart Chain, the calculation of transaction fees follows a simple rule. If a

transaction is sent to an address with no associated contract, the fee is calculated by

multiplying the GASPRICE with the length of the transaction in bytes. In this case, the data

sent with the transaction is not considered. It is important to note that messages function

similarly to transactions in terms of reversions. If a message runs out of gas during execution,

that specific message and all other executions it triggered will revert. However, parent

executions need not revert. This allows for secure execution of contracts that call other

contracts since the gas limit can be strictly enforced. Additionally, a CREATE opcode is

available for creating new contracts with similar execution mechanics to CALL, but with the

exception that the execution output determines the code of the newly created contract.

5. Code Execution

○ In the Quantum Smart Chain, contract code is written in a bytecode language known as

"Quantum virtual machine code" or "QVM code". This low-level, stack-based code

comprises a series of bytes, with each byte representing an operation. Code execution

involves a continuous loop, in which the current operation is executed at the program counter

and the counter is then incremented by one. This continues until the end of the code is

reached, an error occurs, or a STOP or RETURN instruction is detected.

○ There are three spaces available for storing data during code execution. The stack is a

last-in-first-out container that allows values to be pushed and popped. Memory is an

expandable byte array that can be infinitely extended. Additionally, the contract's long-term

storage provides a key/value store for persistent data storage. Unlike the stack and memory,

storage persists after computation has ended.

○ The code can also access various inputs, including the value, sender, and data of the

incoming message. Additionally, the code can access block header data and return a byte

array of data as output.

○ In Quantum Smart Chain, the execution model of QVM code is a straightforward and formal

process. During the operation of the Quantum virtual machine, the computational state is

defined by the tuple (block_state, transaction, message, code, memory, stack, pc, gas), where

block_state represents the global state that contains all accounts, including balances and

storage. At the beginning of each execution round, the current instruction is located by taking

the pcth byte of the code, or 0 if pc >= len(code), and each instruction has its definition in

terms of how it affects the tuple. For instance, the ADD operation pops two items off the

stack and pushes their sum, reduces gas by 1 and increments pc by 1, while the SSTORE

operation pushes the top two items off the stack and inserts the second item into the storage

of the contract at the index specified by the first item. Although many methods are available

to optimize Quantum virtual machine execution via just-in-time compilation, implementing

Quantum can be done in a few hundred lines of code.

III. Application

1. Applications

○ On top of the Quantum Smart Chain , there are three main categories of applications. The

first category is financial applications, which include sub-currencies, financial derivatives,

and other types of contracts that use money. The second category is semi-financial

applications, which involve both monetary and non-monetary elements. Finally, there are

non-financial applications such as online voting and decentralized governance.

○ Overall, the Quantum Smart Chain provides a flexible and powerful platform for building

decentralized applications. By leveraging smart contracts and the ability to execute code on

the blockchain, developers can build a wide range of applications that are secure, transparent,

and censorship-resistant. As the ecosystem continues to grow and evolve, we can expect to

see even more innovative applications built on top of the Quantum Smart Chain.

2. Token Systems

○ In the realm of blockchain technology, on-chain token systems offer a plethora of

possibilities, from sub-currencies that represent real-world assets such as gold or USD, to

company stocks, secure coupons, and even token systems that have no ties to conventional

value, but instead serve as incentive point systems. Interestingly, the implementation of token

systems in Quantum Smart Chain is a straightforward process. The fundamental aspect to

recognize is that a currency or token system is simply a database that has one operation:

subtract X units from A and give X units to B, with the condition that A possessed at least X

units before the transaction, and the transaction has the approval of A. Thus, to establish a

token system in Quantum Smart Chain, one would only need to incorporate this logical

operation into a contract.

○ The basic code for implementing a token system in Serpent looks as follows:

def send(to, value):

if self.storage[msg.sender] >= value:

self.storage[msg.sender] = self.storage[msg.sender] - value

self.storage[to] = self.storage[to] + value

○ This is a practical implementation of the state transition function for a "banking system" as

described earlier in this whitepaper. The initial step of distributing currency units and

handling certain edge cases requires a few additional lines of code. It is also recommended to

add a function that enables other contracts to query an address's balance. Quantum-based

token systems have an advantage that they can enable direct payment of transaction fees in

the respective currency. This would be achieved by the contract maintaining an ether balance

and refunding the sender with the same amount of ether used to pay fees. The contract would

then replenish its balance by collecting internal currency units and reselling them through a

constant running auction. To use this feature, users would need to "activate" their accounts

with ether, but once the ether is in place, it can be reused as the contract will refund it each

time.

3. Financial derivatives and Stable-Value Currencies

○ Smart contracts are gaining popularity in the world of finance, and financial derivatives are

one of the most common and straightforward applications of these contracts. However,

implementing financial contracts can be challenging as many of them require a reference to

an external price ticker. For instance, a desirable smart contract would be one that hedges

against the volatility of a cryptocurrency like Ether with respect to the US dollar, but this

requires the contract to have access to the current QUC/USD exchange rate.

○ One way to address this challenge is through a "data feed" contract that is maintained by a

specific party, such as NASDAQ. This contract is designed so that the party can update it as

needed and provides an interface that allows other contracts to query the contract and receive

a response that provides the current price. Once the contract has access to the necessary

information, implementing financial derivatives, such as a hedging contract, becomes simple

and straightforward. The hedging contract waits for both parties to deposit a specific amount

of Ether, records the USD value of that deposit, and after a set period of time, reactivates to

transfer the appropriate amount of Ether based on the current exchange rate.

○ Assuming that the key element is in place, the following is a representation of the hedging

contract:

a. Party A deposits 1000 ether.

b. Party B deposits 1000 ether.

c. The contract records the USD value of 1000 ether by accessing the data feed contract

and stores it in storage. Let's denote this value as $x.

d. After a duration of 30 days, either A or B may "reactivate" the contract in order to

transfer $x worth of ether to A (calculated using the data feed contract again to obtain

the updated price), while the remaining ether is sent to B.

○ A smart contract with the ability to hedge against cryptocurrency volatility has great potential

in the world of crypto-commerce. One of the biggest drawbacks of cryptocurrencies is their

volatile nature. Many users and merchants would like to use cryptocurrencies for their

convenience and security, but are hesitant due to the possibility of losing a significant amount

of their funds in a short period of time. To address this issue, issuers have proposed the

creation of sub-currencies, where they can issue and revoke units and offer one unit of the

currency to anyone who provides them with one unit of a specified underlying asset (such as

gold or USD) offline. In return, the issuer promises to provide one unit of the underlying

asset to anyone who sends back one unit of the crypto-asset. This mechanism enables any

non-cryptographic asset to be converted into a cryptographic asset, as long as the issuer is

trustworthy.

○ In the context of cryptographic assets, relying solely on issuers to back up assets is not

always reliable due to concerns around trustworthiness, weak or hostile banking

infrastructure, among other factors. As an alternative, financial derivatives present a viable

option where a decentralized market of speculators betting on the price of a cryptographic

reference asset, such as QUC, assumes the role of providing funds to back up the asset.

Unlike issuers, speculators cannot default on their obligation since the hedging contract locks

their funds in escrow. Although this approach still requires a trusted source to provide the

price ticker, it significantly reduces infrastructure requirements and the potential for fraud.

It's worth noting that while this solution is not fully decentralized, issuing a price feed doesn't

require any licenses and can be categorized as free speech. Therefore, it represents a

significant improvement over the issuer-backed assets model.

4. Identity and Reputation Systems

○ The example contract provided above is a simple implementation of a Namecoin-like name

registration system on the Quantum platform. In this contract, there is a single function called

`register`, which takes two arguments, `name` and `value`. The function checks if the given

name is not already registered in the contract's storage. If the `name` is not registered yet, it

assigns the `value` to the `name` in the storage.

○ This basic contract allows users to register unique names and associate them with specific

values, similar to how Namecoin's system maps domain names to IP addresses. However,

this is a minimal example and lacks features such as updating registered names, transferring

ownership, or setting expiration times for name registrations. A more complete

implementation would require additional functionality to support these features and enhance

the overall system's capabilities.

○ The Quantum Smart Chain's contract is a straightforward yet powerful concept. Only allows

adding new entries, but not modifying or deleting existing ones. Users can easily register a

name along with a corresponding value, and this registration remains permanent. A more

advanced name registration contract can also incorporate a "function clause" to enable other

contracts to access it. Additionally, it features a mechanism for the "owner" or the first

registrant to modify data or transfer ownership. Further functionalities such as reputation and

web-of-trust can also be incorporated into the system.

5. Decentralized File Storage

○ In recent years, a number of popular online file storage startups have emerged, such as

Dropbox, offering users the ability to upload a backup of their hard drive for a monthly fee.

However, the current file storage market can be inefficient, especially at the 20-200 GB level

where neither free quotas nor enterprise-level discounts apply. Monthly prices for

mainstream file storage costs can exceed the cost of an entire hard drive in a single month.

The Quantum Smart Chain blockchain offers a solution to this problem by enabling the

development of a decentralized file storage ecosystem. Individual users can rent out their

own hard drives and earn small quantities of money, while unused space can be utilized to

drive down the costs of file storage. With Quantum Smart Chain, file storage can become

more affordable and accessible for everyone.

○ The fundamental building block of the Quantum Smart Chain is what we call the

"decentralized Dropbox contract." This contract is designed to provide a secure and

decentralized way to store and retrieve data. To use the contract, the user first breaks their

data into blocks, encrypting each block for privacy, and then creates a Merkle tree from the

blocks. The contract is then created with a rule that specifies that for every N blocks, the

contract will randomly select an index in the Merkle tree, using the previous block hash as a

source of randomness. The first entity to supply a transaction with proof of ownership of the

block at that particular index in the tree will be rewarded with X ether. To retrieve their file, a

user can use a micropayment channel protocol (such as paying 1 szabo per 32 kilobytes) to

recover the data. The most fee-efficient approach is for the payer to wait until the end of the

transaction and then replace the transaction with a slightly more lucrative one with the same

nonce after every 32 kilobytes. The decentralized Dropbox contract ensures the privacy and

security of data storage and retrieval on the Quantum Smart Chain.

○ One of the key features of Quantum Smart Chain is the ability to reduce the risk of trusting

random nodes to store a file. This is achieved by using secret sharing to split the file into

multiple pieces, and constantly monitoring the contracts to ensure that each piece is still in

possession of at least one node. As long as a contract is still active and paying out, it serves

as cryptographic proof that the file is still being stored by someone in the network, greatly

reducing the risk of data loss.

6. Decentralized Autonomous Organizations

○ A decentralized autonomous organization (DAO) is a concept that represents a group or

community whose decision-making process and fund allocation are controlled by its

members without centralized authority. Instead, it relies on blockchain technology to enforce

rules, distribute funds, and make decisions.

○ In a "decentralized autonomous corporation" (DAC) model, shareholders receive dividends

and hold tradable shares. This model closely resembles a traditional company structure but

uses blockchain technology for enforcement and governance.

○ On the other hand, a "decentralized autonomous community" (DACm) model promotes equal

decision-making power among its members. To add or remove a member, 67% of existing

members need to agree. This model focuses on collective decision-making and ensuring that

each person has only one membership, which is enforced by the community.

○ DAOs can be utilized in various ways, such as governing decentralized platforms, managing

funds for charitable causes, or even running entire ecosystems like decentralized finance

(DeFi) projects. The primary appeal of DAOs is the elimination of centralized control,

leading to a more transparent, democratic, and efficient decision-making process that is

secured and verified through blockchain technology.

○ The following is a proposal for coding a DAO on the Quantum Smart Chain blockchain. The

design involves a self-modifying code that can be altered if two-thirds of members agree to a

change. Although blockchain code is theoretically immutable, it is possible to achieve

de-facto mutability by storing chunks of the code in separate contracts and having the address

of these contracts stored in modifiable storage.

○ In order to implement a DAO, a contract with specific clauses would need to be developed.

The contract would include functionality for managing proposed changes to storage, tracking

member votes for each proposal, and maintaining a list of all members. Once a proposal

receives two-thirds of member votes, a finalizing transaction would execute the proposed

change.

○ A more advanced contract could include voting features for sending transactions, adding or

removing members, and even Liquid Democracy-style delegation. Under this model,

members could assign others to vote on their behalf, with assignments being transitive. This

approach would enable the DAO to evolve organically as a decentralized community,

allowing members to delegate the task of determining membership to specialists as needed.

This feature allows for specialists to enter and exit the DAO as the community's alignment

changes over time.

○ In Quantum Smart Chain, an alternative approach to a decentralized autonomous

organization (DAO) is a decentralized corporation. In this model, any account can hold zero

or more shares, and a decision can be made with the agreement of two-thirds of the shares. A

comprehensive implementation of this model would include asset management features, the

ability to make and accept offers to buy or sell shares, and an order-matching mechanism

within the contract. Delegation would also be possible, using a Liquid Democracy-style

system that generalizes the concept of a traditional "board of directors".

7. Further Applications

○ A savings wallet is just one example of a financial application on QUC. Other examples

include sub-currencies, financial derivatives, hedging contracts, and wills. Additionally, QUC

can support non-financial applications such as online voting and decentralized governance.

With its flexibility and security, QUC can serve as a platform for a wide variety of

applications, opening up new possibilities for innovation in the blockchain space.

○ Another promising application of Quantum Smart Chain is Crop insurance. By using a data

feed of weather patterns, a farmer can purchase a financial derivatives contract that pays out

inversely based on precipitation. For instance, if a drought occurs and the farmer's crops fail,

the derivative will automatically pay out, helping to offset losses. On the other hand, if there

is sufficient rain and the crops do well, the farmer benefits from the good weather and does

not need to make a claim. This same concept can be applied to natural disaster insurance

more broadly, providing a new level of financial protection for individuals and communities.

○ One potential application of Quantum Smart Chain is a decentralized data feed for financial

contracts. This can be achieved through the use of a protocol called "SchellingCoin".

Participants provide the value of a given datum, such as the QUC/USDT price, and the

values are sorted, with participants between the 25th and 75th percentile receiving a reward.

This creates an incentive for participants to provide truthful information, leading to a

decentralized and reliable data feed.

○ SchellingCoin can be extended beyond financial contracts to provide data on other values,

such as the temperature in Berlin or the result of a particular hard computation. This creates a

powerful tool for decentralized applications that require accurate and reliable data feeds,

without the need for a centralized authority.

○ Smart multi signature escrow is another potential application of Quantum Smart Chain.

While Bitcoin allows for multi signature transaction contracts, Quantum offers more granular

control over the spending of funds. For instance, with Quantum multisig, four out of five

parties can spend all the funds, three out of five can spend up to 10% of the funds per day,

and two out of five can spend up to 0.5% per day. Additionally, Quantum's multisig is

asynchronous, which means two parties can register their signatures on the blockchain at

different times, and the last signature will automatically send the transaction. These features

make smart multi signature escrow a valuable tool for managing funds in a variety of

settings, such as real estate transactions or joint business ventures.

○ One potential use of the QVM technology is the creation of a verifiable computing

environment that enables users to outsource computations and obtain proofs that the

computations were done correctly at random checkpoints. This can lead to the development

of a cloud computing market where any user can participate and ensure the trustworthiness of

the system. While this system may not be suitable for all tasks, parallelizable projects like

SETI@home, folding@home, and genetic algorithms can be easily implemented on top of it.

By using spot-checking and security deposits, users can ensure that the nodes cannot cheat

for profit.

○ Decentralized gambling. The Quantum Smart Chain can facilitate peer-to-peer gambling

protocols, providing secure and transparent transactions with minimal fees. Simple protocols

like a contract for difference on the next block hash can be implemented, while more

sophisticated gambling services can be built on top of the blockchain. By leveraging smart

contracts, users can trust that the system is fair and tamper-proof, eliminating the need for

intermediaries and reducing costs. This opens up opportunities for new and innovative

gambling applications that can be executed in a decentralized, peer-to-peer manner, offering

a level of trust and transparency that traditional gambling services cannot match.

○ Decentralized prediction markets. With the help of an oracle or SchellingCoin, prediction

markets can be effortlessly integrated into Quantum Smart Chain, allowing users to speculate

on future events such as election outcomes, stock prices, and sports events. Prediction

markets that use SchellingCoin as their data source are incredibly trustworthy and can be

leveraged as a governance protocol for decentralized organizations, making it a promising

use case for Quantum Smart Chain. This technology can provide a more accurate forecast

than traditional polls and surveys, and can incentivize more informed decision-making by

rewarding those who make correct predictions.

○ Quantum Smart Chain offers on-chain decentralized marketplaces, which are built on a

robust identity and reputation system. This system forms the foundation of our marketplace,

enabling secure and transparent transactions. With Quantum Smart Chain, buyers and sellers

can engage in peer-to-peer transactions without the need for intermediaries, resulting in

reduced costs and increased efficiency. Our identity and reputation system ensures that all

marketplace participants are authenticated and accountable, promoting trust and facilitating a

thriving ecosystem.

IV. Miscellanea And Concerns

1. Modified GHOST Implementation

○ The Greedy Heaviest Observed Subtree (GHOST) protocol is a pioneering innovation first

introduced by Yonatan Sompolinsky and Aviv Zohar in December 2013, designed to tackle

issues arising in blockchains with fast confirmation times. Quantum Smart Chain, a new

blockchain, aims to adopt the GHOST protocol to optimize its performance and maintain

robust security.

○ In blockchains with rapid confirmation times, high stale rates can compromise security. This

issue arises because blocks need time to propagate throughout the network. If miner A mines

a block and miner B mines another block before receiving miner A's block, miner B's block

will be wasted and will not contribute to network security.

○ Moreover, there is a centralization concern: if miner A is a mining pool with 30% hash power

and miner B has 10% hash power, miner A faces a 70% risk of producing a stale block, while

miner B faces a 90% risk. Consequently, if the block interval is short enough for the stale rate

to be high, miner A will be substantially more efficient due to its larger size. This situation

can lead to one mining pool gaining a significant percentage of network hash power,

resulting in de facto control over the mining process.

○ The GHOST protocol, as implemented in Quantum Smart Chain, addresses these challenges

by modifying the blockchain's structure. This allows for faster confirmation times without

sacrificing security or causing centralization. By incorporating "stale" blocks into the

decision-making process, GHOST enhances Quantum Smart Chain's overall security and

mitigates the centralization risks associated with mining pools of varying hash power. With

the integration of GHOST protocol, Quantum Smart Chain aims to deliver a secure,

decentralized, and efficient blockchain solution for various applications.

○ In the Quantum Smart Chain whitepaper, the GHOST protocol's implementation, as outlined

by Sompolinsky and Zohar, addresses the primary issue of network security loss by

incorporating stale blocks in the determination of the "longest" chain. This involves

considering not only a block's parent and further ancestors, but also the stale descendants of

the block's ancestor (referred to as "uncles" in Quantum terminology) when calculating

which block has the greatest total proof-of-work support.

○ To tackle the secondary issue of centralization bias, Quantum Smart Chain expands upon

Sompolinsky and Zohar's protocol by providing block rewards to stale blocks as well. Under

this system, a stale block receives 87.5% of its base reward, while the nephew block, which

includes the stale block, earns the remaining 12.5%. It is important to note, however, that

transaction fees are not awarded to uncles.

○ Quantum Smart Chain adopts a simplified version of GHOST, similar to Ethereum, with a

depth limit of seven levels. The implementation is defined as follows:

a. A block must specify a parent and can indicate 0 or more uncles.

b. For an uncle to be included in block B, it must meet these criteria:

1. It must be a direct child of the kth generation ancestor of B, where 2 <= k <=

7.

2. It cannot be an ancestor of B.

3. An uncle must be a valid block header but is not required to be a previously

verified or even valid block.

4. An uncle must be distinct from all uncles included in previous blocks and all

other uncles included in the same block (non-double-inclusion).

c. For every uncle U in block B, the miner of B receives an additional 3.125% added to

its coinbase reward, and the miner of U gets 93.75% of a standard coinbase reward.

○ Quantum Smart Chain utilizes a limited version of GHOST, allowing uncles to be included

only up to 7 generations, for two primary reasons. Firstly, an unlimited GHOST

implementation would introduce excessive complexity into the determination of valid uncles

for a specific block. Secondly, an unlimited GHOST with the compensation mechanism

employed in Quantum eliminates the incentive for a miner to mine on the main chain instead

of an attacker's public chain. By limiting GHOST to a 7-generation depth, Quantum Smart

Chain maintains the balance between network security and efficiency while preserving

miners' incentives to support the main chain.

2. Fees

○ As every transaction added to the blockchain imposes a cost on the network, including the

need for downloading and verifying the transaction, a regulatory mechanism, typically

transaction fees, is required to prevent abuse. The default method, employed by Bitcoin,

relies on voluntary fees and depends on miners as gatekeepers to establish dynamic

minimums. While this market-based approach has been well-received within the Bitcoin

community, allowing supply and demand between miners and transaction senders to

determine the price, it has its drawbacks.

○ Contrary to the intuitive notion of transaction processing as a service provided by miners to

senders, in reality, each transaction included by a miner must be processed by every node in

the network. Consequently, the majority of transaction processing costs are borne by third

parties, not the miner making the inclusion decision. This situation creates a potential

tragedy-of-the-commons problem, where individual miners' decisions, based on their

self-interest, may lead to negative consequences for the overall network. Quantum Smart

Chain aims to address these challenges and ensure a more balanced approach to transaction

processing and fee management.

○ Interestingly, this market-based mechanism flaw can be mitigated when given a specific

inaccurate simplifying assumption. The argument can be broken down as follows. Let's

assume that:

1. A transaction results in k operations, providing a reward of kR to any miner who

includes it. Here, R is determined by the sender, and both k and R are (approximately)

visible to the miner beforehand.

2. An operation has a processing cost of C for any node (i.e., all nodes have the same

efficiency).

3. There are N mining nodes, each possessing an equal share of processing power (i.e.,

1/N of the total).

4. No non-mining full nodes are present in the network.

5. Under these assumptions, the market-based mechanism can balance itself, preventing

the tragedy-of-the-commons problem. Quantum Smart Chain takes these

considerations into account while designing its fee structure and network management

to ensure efficient transaction processing and a fair distribution of costs among

network participants.

○ A miner will be willing to process a transaction if the expected reward is greater than the

cost. Therefore, the expected reward is kR/N, as the miner has a 1/N chance of processing the

next block, and the processing cost for the miner is simply kC. As a result, miners will

include transactions where kR/N > kC, or R > NC. It is important to note that R represents

the per-operation fee provided by the sender and serves as a lower bound on the benefit that

the sender gains from the transaction. On the other hand, NC signifies the cost to the entire

network of processing an operation. Consequently, miners are incentivized to include only

those transactions for which the total utilitarian benefit surpasses the cost. In Quantum Smart

Chain, this incentive structure ensures that miners prioritize transactions that contribute

positively to the network's overall efficiency and security.

○ In reality, there are several significant deviations from the assumptions mentioned earlier:

1. The miner incurs a higher cost to process the transaction compared to other verifying

nodes since the additional verification time delays block propagation and increases the

chance of the block becoming stale.

2. Non-mining full nodes do exist.

3. The distribution of mining power may become highly unequal in practice.

4. Speculators, political adversaries, and malicious actors whose utility functions include

causing harm to the network do exist, and they can create contracts where their cost is

significantly lower than the cost incurred by other verifying nodes.

(1) creates a tendency for the miner to include fewer transactions, and (2) increases NC; as a

result, these two effects at least partially cancel each other out. (3) and (4) are the major

concerns; to address them, we implement a floating cap: no block can contain more

operations than BLK_LIMIT_FACTOR times the long-term exponential moving average.

Specifically:

blk.oplimit = floor((blk.parent.oplimit * (EMAFACTOR - 1) + floor(parent.opcount *

BLK_LIMIT_FACTOR)) / EMA_FACTOR)

For the time being, BLK_LIMIT_FACTOR and EMA_FACTOR are set as constants at

65536 and 1.5, respectively. However, these values are subject to change after further

analysis. Quantum Smart Chain considers these deviations and implements the floating cap

mechanism to ensure the network's stability, security, and equitable distribution of resources.

○ There is another factor that discourages large block sizes, similar to Bitcoin: larger blocks

will take longer to propagate and, as a result, have a higher probability of becoming stale. In

Quantum Smart Chain, blocks that consume a significant amount of gas can also experience

longer propagation times, both because of their larger physical size and the extended time

required to process and validate the transaction state transitions. While this delay disincentive

is a major consideration in Bitcoin, it is less prominent due to the implementation of the

GHOST protocol. Consequently, relying on regulated block limits in Quantum Smart Chain

provides a more stable foundation for maintaining network efficiency and security.

3. Computation And Turing-Completeness

○ As detailed in the state transition section, our approach requires a transaction to set a

maximum number of computational steps allowed for execution. If the execution surpasses

this limit, the transaction is reverted, but fees are still paid. Messages function similarly. The

motivation behind our solution can be illustrated with the following examples:

a. An attacker creates a contract with an infinite loop and sends a transaction to activate

the loop to the miner. The miner processes the transaction, runs the infinite loop until

it runs out of gas, and stops midway. Despite the halted execution, the transaction

remains valid, and the miner claims the fee from the attacker for each computational

step.

b. An attacker designs a lengthy infinite loop intending to occupy the miner's

computation resources for an extended period, causing more blocks to be generated

before the miner can include the transaction and claim the fee. However, the attacker

must provide a STARTGAS value limiting the number of computational steps,

allowing the miner to know in advance that the execution will take an excessive

amount of steps.

c. An attacker encounters a contract with code like send(A,contract.storage[A]);

contract.storage[A] = 0 and sends a transaction with just enough gas to execute the

first step but not the second (i.e., making a withdrawal without decreasing the

balance). The contract author doesn't need to protect against such attacks since any

changes will be reverted if the execution stops halfway.

d. A financial contract uses the median of nine proprietary data feeds to minimize risk.

An attacker gains control of one data feed, designed to be modifiable via the

variable-address-call mechanism as described in the DAO section, and alters it to run

an infinite loop. This change attempts to force any claims on funds from the financial

contract to run out of gas. However, the financial contract can impose a gas limit on

the message to circumvent this issue.

○ In Quantum Smart Chain, these examples demonstrate the effectiveness of implementing gas

limits in transactions and messages to safeguard against malicious activities and maintain the

integrity of the network.

4. Currency And Issuance

○ The Quantum Smart Chain network incorporates its native currency, qubit, which serves a

dual purpose. First, it provides a primary liquidity layer, enabling efficient exchange between

various types of digital assets. Second, and more importantly, it offers a mechanism for

paying transaction fees. To ensure convenience and avoid potential denomination debates

(similar to the mBTC/uBTC/satoshi debate in Bitcoin), the denominations for Quantum

Smart Chain are pre-defined as follows:

1: atom

10¹²: boltz

10¹⁵: farad

10¹⁸: qubit

○ This denomination system can be understood as an extended version of the concept of

"dollars" and "cents" or "BTC" and "satoshi". In the near future, we anticipate "qubit" to be

utilized for standard transactions, "farad" for microtransactions, and "boltz" and "atom" for

technical discussions related to fees and protocol implementation. The other denominations

might become relevant later on but should not be incorporated into clients at this stage.

○ The issuance model for Quantum Smart Chain will be as follows:

a. Qubit, the native currency, will be released in a token sale at a rate of 1000-2000 qubit

per BTC, a mechanism designed to fund the Quantum Smart Chain organization and

finance development, similar to successful strategies employed by other platforms

such as Mastercoin and NXT. Early buyers will enjoy greater discounts. The BTC

obtained from the sale will be exclusively used to pay salaries and bounties to

developers and invested in various for-profit and non-profit projects within the

Quantum Smart Chain and cryptocurrency ecosystem.

b. 0.099x the total amount sold (60102216 QUBIT) will be allocated to the organization

to compensate early contributors and cover QUBIT-denominated expenses before the

genesis block.

c. 0.099x the total amount sold will be maintained as a long-term reserve.

d. 0.26x the total amount sold will be allocated to miners each year indefinitely after that

point.

5. Long-Term Supply Growth Rate (percent)

○ In the Quantum Smart Chain model, the two main choices are (1) the existence and size of an

endowment pool, and (2) the existence of a permanently growing linear supply, as opposed to

a capped supply like in Bitcoin. The rationale for the endowment pool is as follows:

○ If there were no endowment pool, and the linear issuance was reduced to 0.217x to maintain

the same inflation rate, the total quantity of qubit would be 16.5% less, making each unit

19.8% more valuable. Consequently, in equilibrium, 19.8% more qubit would be purchased

in the sale, rendering each unit's value equivalent to its previous level. The organization

would then possess 1.198x more BTC, which can be regarded as two separate portions: the

original BTC and an additional 0.198x.

○ This scenario is essentially identical to the endowment pool, but with one crucial distinction:

the organization holds solely BTC and, therefore, lacks any incentive to support the value of

the qubit unit.

○ The permanent linear supply growth model addresses some concerns about wealth

concentration in cryptocurrencies like Bitcoin and provides individuals in both the present

and future an equitable opportunity to acquire currency units. Simultaneously, it maintains a

strong incentive to obtain and hold ether, as the "supply growth rate" as a percentage still

approaches zero over time.

○ Furthermore, it is theorized that since coins are continually lost due to carelessness, death,

and other factors, and coin loss can be modeled as a percentage of the total supply per year,

the total currency supply in circulation will eventually stabilize at a value equal to the annual

issuance divided by the loss rate. For example, with a loss rate of 1%, once the supply

reaches 26X, then 0.26X will be mined, and 0.26X will be lost every year, creating a

balanced equilibrium. This model ensures a more sustainable and fair distribution of the

currency, while still incentivizing participation and retention.

○ The note mentions that Quantum is likely to switch to a proof-of-stake (PoS) model for

security in the future, which would significantly reduce the issuance requirement to

somewhere between zero and 0.05X per year. This change would make the Quantum network

more energy-efficient and secure.

○ In case the Quantum organization loses funding or ceases to exist for any reason, a "social

contract" is proposed: anyone can create a future candidate version of Quantum, with the

only condition being that the quantity of ether must be at most equal to 60102216 * (1.198 +

0.26 * n), where n represents the number of years after the genesis block. This condition

ensures that the new candidate versions adhere to a pre-defined ether issuance model.

○ Creators of the candidate versions are free to crowd-sell or assign some or all of the

difference between the PoS-driven supply expansion and the maximum allowable supply

expansion to fund development. If candidate upgrades do not comply with the social

contract, they may justifiably be forked into compliant versions, ensuring that the Quantum

network continues to operate under the agreed-upon rules and principles.

6. Scalability

○ Scalability is a problem with Quantum Smart Chain that many people have. Similar to

Bitcoin, Quantum Smart Chain has the drawback of requiring each network node to process

each transaction. The Bitcoin blockchain is currently 15 GB in size and is expanding by 1

MB every hour. The Bitcoin network would expand by 1 MB every three seconds if it were

to process Visa's 2000 transactions per second (1 GB per hour, 8 TB per year). Quantum

Smart Chain is likely to experience a similar growth pattern, which will be made worse by

the fact that many applications will be built on top of the Quantum Smart Chain blockchain

rather than just a single cryptocurrency as is the case with Bitcoin, but will be made better by

the fact that full nodes only need to store the current state of the network rather than the

entire blockchain history.

○ A big blockchain size has the drawback of increasing the possibility of centralization. Just a

very tiny number of very large organizations would likely maintain complete nodes if the

blockchain size increased to, say, 100 TB, and all normal users would instead likely use light

SPV nodes. This raises the possibility that the complete nodes could come together and

decide to cheat in some way that would be profitable (eg. change the block reward, give

themselves BTC). Light nodes wouldn't be able to recognize this right away. Of course, there

would probably be at least one honest full node, and after a few hours, word of the fraud

would start to spread through channels like Reddit, but by then it would be too late. It would

be up to the regular users to organize a campaign to blacklist the given blocks—a vast and

probably impossible coordination challenge comparable to carrying out a successful 51%

attack. There is a problem with Bitcoin right now, but Peter Todd has recommended a change

to the blockchain that will fix the problem.

○ Quantum Smart Chain will employ two more methods to address this issue in the near future.

First, a lower limit on the number of complete nodes is created by the blockchain-based

mining algorithms, which need at least every miner to be a full node. But, after processing

each transaction, we will, secondly and more significantly, add an intermediate state tree root

to the blockchain. As long as there is a single trustworthy verifying node, the centralization

issue can be solved even with centralized block validation using a verification protocol. If a

miner publishes an invalid block, that block must either be badly formatted, or the state S[n]

is incorrect. Since S[0] is known to be correct, there must be some first state S[i] that is

incorrect where S[i-1] is correct. The verifying node would provide the index i, along with a

"proof of invalidity" consisting of the subset of Patricia tree nodes needing to process

APPLY(S[i-1],TX[i]) -> S[i]. Nodes would be able to use those nodes to run that part of the

computation, and see that the S[i] generated does not match the S[i] provided.

○ Another, more advanced attack would involve fraudulent miners broadcasting incomplete

blocks, rendering it impossible to identify whether or not a block is authentic due to a lack of

complete information. A challenge-response protocol is used as a workaround for this

problem. Verification nodes issue "challenges" in the form of target transaction indices, and

light nodes treat responses as untrusted until another node, such as a miner or another

verifier, provides a subset of Patricia nodes as evidence of the block's validity.

V. Conclusion

○ With the help of a highly generalized programming language, the Quantum Smart Chain

protocol offers advanced features like on-blockchain escrow, withdrawal limitations,

financial contracts, gambling markets, and the like. It was initially envisioned as an enhanced

version of a cryptocurrency. The existence of a Turing-complete programming language

means that arbitrary contracts can theoretically be developed for any transaction type or

application, even though the Quantum protocol would not "support" any of the applications

directly. Nevertheless, the fact that Quantum Smart Chain protocol goes much beyond just

currency is what makes it more intriguing.

○ Protocols for decentralized file storage, computation, and prediction markets, among dozens

of other similar ideas, have the potential to significantly improve the efficiency of the

computational industry and give other peer-to-peer protocols a significant boost by adding an

economic layer for the first time. Furthermore, there is a sizable selection of applications that

have nothing to do with money.

○ The Quantum Smart Chain protocol uses the idea of an arbitrary state transition function to

create a platform with special potential; rather than being a closed-ended, single-purpose

protocol intended for a specific range of applications in data storage, gaming, or finance,

Quantum Smart Chain is open-ended by design, and we believe that it is incredibly

well-suited to serving as a foundational layer for a very large number of both financial and

non-financial applications.

VI. Notes and Further Reading

1.Notes

○ A savvy reader might observe that a Bitcoin address is actually the elliptic curve public key's

hash, not the key itself. Yet, referring to the pubkey hash as a public key in and of itself is

totally acceptable cryptographic language. This is so because Bitcoin's cryptography can be

thought of as a unique digital signature algorithm, in which the public key is the hash of the

ECC pubkey, the signature is the concatenation of the ECC pubkey and the ECC signature,

and the verification algorithm entails comparing the ECC pubkey in the signature to the ECC

pubkey provided as a public key before comparing the ECC signature to the ECC pubkey.

○ Technically, the median of the eleven blocks before that.

○ Internally, "CHARLIE" and 2 are both numbers, with the latter being represented in

big-endian base 256. The range of possible numbers is 0 to 2^256-1.

2. Further Reading

○ Like many other open-source, community-driven software initiatives, Quantum Smart Chain

has developed since its start. This article is a good place to start if you want to learn about

Quantum Smart Chain's most recent advancements and how protocol changes are made.

